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Abstract

We report on an architecture for the unsupervised discovery
of talker-invariant subword embeddings. It is made out of
two components: a dynamic-time warping based spoken term
discovery (STD) system and a Siamese deep neural network
(DNN). The STD system clusters word-sized repeated frag-
ments in the acoustic streams while the DNN is trained to mini-
mize the distance between time aligned frames of tokens of the
same cluster, and maximize the distance between tokens of dif-
ferent clusters. We use additional side information regarding
the average duration of phonemic units, as well as talker iden-
tity tags. For evaluation we use the datasets and metrics of the
Zero Resource Speech Challenge. The model shows improve-
ment over the baseline in subword unit modeling.
Index Terms: zero resource speech challenge, feature extrac-
tion, deep learning

1. Introduction
The automatic discovery of linguistic units from the raw speech
stream may seem to be a daunting task from a scientific and
technological point of view. Yet, the fact that infants sponta-
neously converge on what amounts to a functional speech rec-
ognizer (language-tuned acoustic and language models) within
a year or so, by mere immersion in a linguistic community
[1, 2], indicates that it is not an impossible one. Infants do
not construct a speech recognizer by being fed hours of speech
paired with phone labels. However, their task is not totally un-
supervised either. Apart from the fact that infant speech input is
accompanied by multimodal signals that may contain relevant
side information (visual context, social signals etc.), the speech
signal itself is produced by an adult linguistic system which has
a particular universal structure that the infant learner could ex-
ploit. Here, we will exploit one such source of information;
the fact that speech contains hierarchically organized levels of
structure: utterances are made of words, and words are made of
phonemes.

In particular, our paper rests on two critical assumptions
regarding words and phonemes: (1) word types are more sepa-
rated in acoustic space than phoneme classes, (2) pairs of word
tokens share most of their phonemes if they belong to the same
class, and differ in most of their phonemes if not. At a high
level, this suggests the following learning strategy: first, dis-
cover word-like units from the signal using spoken term dis-
covery (assumption 1), then, use the discovered word-like units
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to construct a word ’tutor’ that trains phoneme-like representa-
tions (assumption 2). The tutor works by aligning each pair of
word-like tokens and declaring that the aligned frames represent
the same “phonemes” (abstract speech feature representations)
when the word-like tokens are in the same class, and different
ones when they are in different classes. We learn these using a
deep neural network.

Previous work in the psycholinguistic literature has shown
that lexical information can help in discovering phoneme iden-
tity. Using a Bayesian model, Feldman et al. [3] demonstrated
the feasibility of this principle in a toy model with simple Gaus-
sian data. Others (cf. [4, 5]) demonstrated using transcribed
speech that such top down information can help to cluster al-
lophones into phonemes. Synnaeve et al. [6, 7] showed that,
using oracle word labels, a deep neural network can be trained
to yield a phonetic embedding whose performance on cross-
speaker phoneme discrimination improves substantially on the
raw input features. This architecture, ABNET, is described be-
low. Finally, Jansen et al. [8], using an architecture on denoising
auto-encoders, found that both oracle word labels and speech
fragments discovered automatically can yield good speech fea-
tures. Here we test whether the ABNET architecture can be cou-
pled with a spoken term discovery system, discovering words to
help discover phonemes.

In addition to exploiting the relationships between
phonemes and words, our paper explores two other potential
sources of side information. The first one is that speech not only
conveys linguistic information, but also information pertaining
to speaker identity. Here, we assume that speaker identity is ac-
cessible to infants, either through an analysis of the speech sig-
nal alone (as in speaker diarization) or using multimodal input.
With a DNN architecture, a common technique is to concatenate
a speaker embedding with the input features during the training
of the network [9, 10]. We will explore the fact that having ac-
cess to speaker identity information is useful, since it provides
information about what information to ignore or normalize for

in the speech signal. The second source of information could
be an innate knowledge of the temporal properties of phoneme
units in human languages. Typically, phonemes have a duration
around 70ms; one could use this source of knowledge to either
discard sections of speech that are corrupted and therefore do
not obey this structure, or to discard potentially flawed feature
representations for speech. Several papers have used the differ-
ence in autocorrelation between adjacent and distant frames as
a measure of the quality of a speech recognizer [11, 12], but, to
our knowledge, not to aid in weakly supervised learning.



Figure 1: Overview of the components of our system.

2. System
The general organization of our system is displayed in Figure 1.
Each of the components is described in the sections that follow.

2.1. Spoken term discovery

We use the general framework of spoken term discovery sys-
tems proposed in [13]. These systems search for repeated
acoustic patterns using dynamic time warping (DTW) across
the entire frame-level similarity matrix. Typically, repeated pat-
terns show up as diagonal stretches of high acoustic similar-
ity, which are then segmented out and clustered together into
classes. This process is computationally intensive and several
techniques exist to speed up the pattern discovery. The particu-
lar technique we use here was proposed in [14], which uses ran-
dom vector projections followed by bit quantization to make the
process computationally tractable. The algorithm outputs pairs
of matched fragments together with their DTW score (the aver-
age similarity along the matching path). Further post process-
ing involves recomputing the DTW scores using the real cosine
function on the original input features, and applying connected
component clustering of the found fragments, as in [13], to con-
struct classes. In this paper, we used the implementation of [14],
with a similarity threshold of .5, a DTW threshold of .89, and a
connected component threshold of .98. This is the system used
to generate the baseline of the Zero Resource Speech Challenge
Track 2.

2.2. Word Tutor

The input to the ABNET system is based on a set of patterns
grouped into classes, discovered by the STD system. To obtain
inputs for ABNET, we take the pairs of matching (same-class)
patterns and convert them into collections of pairs of matching
fixed-width fragments, aligned by DTW with frame-level co-
sine distance on the feature representations. We do the same for
a subset of all pairs of mismatching (different-class) patterns,
except we just align them along the diagonal. We use a sub-
set, first, in order to have the same number of matching as mis-
matching word pairs, and second, to balance the matching and
mismatching word pairs to have both same-speaker pairs and
different-speaker pairs. (The ratio of same to different speaker
was left free to vary depending on the input fragments.) This
avoids a statistical bias in which the information about match-
ing versus mismatching phonetic content is accidentally corre-
lated with same versus different speaker (which would turn the
task into an easier speaker identity task).

2.3. ABnet

Figure 2: The Siamese neural network. In the results presented
here, we used K=2 (number of hidden layers), NF=7, NH=500,
NE=100 and sigmoid units.

This part of the system learns a phonetic embedding, i.e., a
vector representation of speech sounds. It is based on [6]. We
use a Siamese network architecture [15] (see Figure 2) in which
we stack 7 frames of features in the input layer (a center frame,
and 3 context frames on each side), followed by 2 layers of 500
units, and a final output layer of 100 units. Two identical copies
of the same network are fed by the features of the members of
each pair, A and B. These are then forward-propagated in the
ABNET, where we finally use an asymmetric loss as in [16] for
learning invariants in images, with a margin as in [17]. In the
embedding, Y , we get:

L(A,B) =

(
(1� cos(YA, YB))/2 if same
cos

2

(YA, YB) if different

where
cos(x, y) =

hx, yi
kxkkyk

Over a whole batch, as we supply negative samples at a
positive to negative ratio of 1:1, this reduces to a loss of:

L(A,B,C) =

1� cos(YA, YB)

2

+ cos

2

(YA, YC)

We refer to this loss function as COSCOS2. Roughly speaking,
this loss function is at its minimum when the vector representa-
tions are collinear for matching frames and orthogonal for mis-
matching frames. This COSCOS2 loss was shown to perform
well in [6]. The network is initialized with random weights and
then trained on 50% of the data. The rest of the data is used as
a heldout validation set, which is tested to stop training in or-
der to prevent the network from overfitting. The networks were
trained for a maximum of 500 epochs by mini-batch stochas-
tic gradient descent (using Adadelta [18]) on an Nvidia K20
Tesla GPU. The ABNET code uses the Theano library[19, 20],
and is freely available [21]. This neural network outputs 100-
dimensional vectors, on which the pairwise distance is best
characterised by the symmetrized Kullback-Leibler (KL) diver-
gence.



2.4. Phoneme duration

To make use of prior information about phoneme duration, we
apply an additional filter on the results of the STD system to
remove patterns that do not clearly signal phoneme duration in
the acoustic signal. To do this, we calculate a version of the M-
delta measure of [12]. This calculation begins with a reference
curve, derived independently from a phone-labelled corpus, (in
this case the TIMIT corpus [22]), giving the overall probability
of a phone label being repeated at various time lags. At short
lags, (e.g., one or two frames away), the probability is relatively
high, and the shape of the curve gives an indication of phoneme
duration.

The M-delta measure quantifies how well this repetition
probability curve is reflected in a measure of acoustic diver-
gence at the same lags. In previous work [12], the divergence
used was the M-measure [11], a time-averaged KL-divergence,
but we instead use d = 1 � cos(x, y), where x and y are fea-
ture vectors representing individual frames. The measure is the
difference between two regression coefficients

M

�

= µ

across

� µ

within

which are the coefficients of the overdetermined system

d = (1� p) · µ
across

+ p · µ
within

where p is the phone label repetition probability. For each
frame, we can compute M

�

with either positive or negative lag,
since the curve will necessarily be the same in both directions.
We will apply it to intervals; we take the M-delta measure of
an interval to be the median value of all calculated frame M

�

values within that interval, both negative and positive lags. We
exclude values where the frame is within 500ms of the edge of
the interval (the right edge for positive-lag M

�

, the left edge
for negative-lag). This is acceptable, because we never apply
the filter to intervals shorter than 500ms.

To filter the intervals returned by STD on the grounds that
they do not adequately preserve information about phoneme du-
ration, we set a cutoff for the M-delta measure of an interval,
and discard intervals that fall below that cutoff.

2.5. Speaker ID and embedding

The speaker identity for each file was provided as part of the
datasets. This information is used to balance the same and dif-
ferent pairs in the Word Tutor. We also explore the possibility
of using a speaker embedding as side information, fed into the
ABNET. To derive the speaker embedding, we used the same
ABNET architecture and tutor, with the same cost function, but
computed over the categories of same and different speakers,
instead of same or different words in order to optimize speaker
discrimination. This architecture and the results are described
in [7].

3. Experiments
3.1. Datasets

We evaluate our system on two datasets prepared in the con-
text of the ZeroSpeech 2015 Challenge [23]. The first dataset
is a subset of the Buckeye Corpus of conversational American
English[24]. The subset consists of around 5 hours of speech of
12 speakers. The second dataset was selected from the NCHLT
Speech Corpus of South African Languages [25]. The selected
subset consists of read speech in Xitsonga from 24 speakers for

Table 1: Output of the spoken term discovery system. These
fragments (“words”) serve as input to the ABNET. E(1,3) refers
to Experiment 1 and 3, described in sections 3.3 and 3.5, respec-
tively. E(2) refers to Experiment 2, described in section 3.4.

Words Pairs Classes NED Coverage
Engl. E(1,3) 6512 4305 3149 0.219 0.163
Engl. E(2) 4334 2630 2092 0.229 0.106
Xits. E(1,3) 3582 1818 1782 0.120 0.162
Xits. E(2) 2286 1158 1138 0.105 0.106

a total of roughly 2.5 hours. Voice activity detection informa-
tion was provided, as well as speaker identity. No annotation in-
formation, whether orthographic or phonemic, was made avail-
able and our evaluation relies solely on the tools made available
by the challenge.

We extract speech features from these data in two ways, for
different parts of our system. First, for the spoken term discov-
ery system, 13-dimensional perceptual linear prediction (PLP)
features were extracted along with first and second derivatives.
Second, the input to the ABNET consists of stacks of 40 Mel-
scaled filters with logarithmic amplitude compression, com-
puted over 25ms windows with a 10ms window shift. Both sets
of features were mean-variance normalized file by file, skipping
the areas indicated as non-speech (by the voice activity informa-
tion provided with the dataset) in the computation of the mean
and variance.

3.2. Evaluation

We use the Track 1 (subword unit discovery) evaluation toolkit
of the ZeroSpeech challenge to evaluate our system. This eval-
uation consists of an aggregate minimal pair ABX discrimina-
tion score run on all of the triphones of the given dataset. The
basic idea behind it is to measure the discriminability between
two sound categories A and B by measuring the error rate in
deciding whether a speech token X is closer to a token from
category A or category B in terms of their DTW distances. The
aggregate error rate indicates the separability in the embedding
space of the phoneme classes, both within-speaker and across-
speaker. For more details on the rationale behind this metric,
see [23].

3.3. Experiment 1: Spoken Term Discovery to ABNET

The spoken term discovery described in section 2.1 was applied
to both the English and Xitsonga datasets. We describe the re-
sults, which will serve as input to the ABNET, in Table 1. The
normalized edit distance (NED) was computed on the phoneme
sequences corresponding to the discovered fragments. The cov-
erage indicates the proportion of the dataset that is covered by
the discovered fragments. The table indicates that we get com-
parable output for both languages. Note that we did not opti-
mize over these scores and only supply this table to illustrate
that the input to the ABNET was obtained in an unsupervised
manner and contains a substantial amount of noise.

As described above in section 2.2, the output of the spo-
ken term discovery system is piped into the ABNET. Filter-
bank stacks corresponding to these discovered pairs of frag-
ments were passed as “same” input to the ABNET, while pairs
of fragments coming from different classes, and therefore not
corresponding to discovered pairs, served as “different” input.



3.4. Experiment 2: M-delta based filtering (MDF)

We compute an M-delta measure for each STD interval, as de-
scribed in section 2.4. Then, for each corpus, we discard all the
intervals falling in the lower quartile for the M-delta measure,
and any intervals left in singleton classes. The result of filtering
is summarized in Table 1. We then pass the result as the set of
discovered words to ABNET as before.

3.5. Experiment 3: Adding a speaker embedding

In this experiment we add information about speaker identity to
the model. As described in section 2.5, an ABNET is trained on
speaker discrimination. It outputs a speaker embedding in 100
dimensions. We average those embeddings for each speaker
and do an Independent Component Analysis (ICA) to reduce
the number of dimensions to 20. We then train a new ABNET
on word discrimination as described in section 2.3, which uses
as input the concatenation of the features of a fragment and the
speaker embedding associated with that fragment, resulting in
an input vector of dimension 7 ⇥ 40 + 20 = 300. In this way,
we provide the system with speaker identification, which could
help with cross speaker word discrimination.

4. Results
The Track 1 ABX evaluation is shown in Table 1. The re-
sults show a marked improvement over the MFCC baseline. In
fact, on the English dataset, the STD ! ABNET system comes
close to the supervised HMM-GMM topline, and beats it in the
within-talker condition. On the Xitsonga dataset, the results are
midway between the baseline and the topline. This is probably
due to the fact that the Xitsonga STD system outputs half as
many pairs as compared to the English STD system. This may
be due to the particular nature of the Xitsonga corpus, which
is composed of read speech made for the purpose of training
speech technology systems. In contrast, the English dataset is
composed of conversations and presumably contains more re-
peated materials. As expected, the across-speaker comparisons
are more difficult than within-speaker, but the difference be-
tween these two conditions is reduced both in relative and ab-
solute terms, compared to the baseline. This indicates that the
STD-based tutoring succeeded in helping to construct a more
speaker-invariant representation, despite the fact that the word-
like pairs that were extracted were themselves mostly within
speaker (94% and 95% respectively).

The results on the optional M-delta filtering and speaker
side information do not show a marked improvement over the
base STD ! ABnet system. On the contrary, the results were
somewhat less good. This rather unsatisfying result has to be
moderated by two considerations. Regarding the M-Delta fil-
ter, its net effect is to reduce the number of available word pairs
that can be used to tutor the ABNET. For the English dataset
the result of this filtering turned out to be of worse quality than
without, see Table 1. The smaller number of pairs constitutes
an unfavorable situation for the strategy outlined in this study,
but this may change with a larger dataset. The talker side infor-
mation necessitates a more complex network. This may hamper
the otherwise beneficial effect of talker side information that has
been noted in other studies [9, 10].

5. Discussion
This paper described a hybrid approach to unsupervised opti-
mization of feature representations for the ABX discrimination

Table 2: Within and across speaker Minimal Pair ABX error
rates for the ZeroSpeech baseline (MFCC) and topline (super-
vised HMM-GMM posteriorgrams), and for our systems.

English Xitsonga
Within Across Within Across

Baseline (MFCC) 15.6 28.1 19.1 33.8
Topline (HMM-GMM) 12.1 16.0 3.5 4.5
STD ! ABNET 12.0 17.9 11.7 16.6
STD / MDF ! ABNET 12.4 18.1 12.6 18.6
STD + SpkID ! ABNET 12.2 18.0 16.5 21.3

task. First, pairs of intervals of high acoustic similarity were ex-
tracted using a spoken term discovery system. Next, an ABNET
was trained to construct a speech feature embedding that re-
flects this information. We showed that, with this architecture,
we can construct a feature representation that does extremely
well on the minimal-pair ABX task. For both the English and
the Xitsonga datasets, our representation improves on the base-
line by a significant margin. In the case of the English dataset
our system even beats the topline, which was constructed us-
ing a supervised system. The addition of information about the
speaker or phoneme duration was shown not to improve the re-
sults of the base system.

This shows that “lexical” information, even when it has
been extracted automatically, and is hence of very low qual-
ity and quantity compared to the gold lexicon, can indeed help
in establishing robust phonetic representations. Further work
needs to be done to establish whether the resulting embeddings
can in turn help in word discovery. The results we found are
encouraging in this respect, since our embeddings improve the
most on across-speaker discrimination, compared to the MFCC
baseline. However, for a synergistic situation to emerge it would
be necessary to construct a pair of systems—a spoken term de-
tection system and a phonetic learner—finely tuned to work to-
gether.
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